Neural network induction graph for pattern recognition
نویسندگان
چکیده
منابع مشابه
Neural network induction graph for pattern recognition
This paper presents a novel architecture of neural networks designed for pattern recognition. The concept of induction graphs coupled with a divide-and-conquer strategy de3nes a neural network induction graph (NNIG). First, the NNIG concept is described and its properties detailed. It is based on a set of several little neural networks, each one discriminating only two classes. The specializati...
متن کاملAN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION
A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...
متن کاملan improved controlled chaotic neural network for pattern recognition
a sigmoid function is necessary for creation a chaotic neural network (cnn). in this paper, a new function for cnn is proposed that it can increase the speed of convergence. in the proposed method, we use a novel signal for controlling chaos. both the theory analysis and computer simulation results show that the performance of cnn can be improved remarkably by using our method. by means of this...
متن کاملGraph of Neural Networks for Pattern Recognition
This paper presents a new architecture of neural networks designed for pattern recognition. The concept of induction graphs coupled with a divide-and-conquer strategy defines a Graph of Neural Network (GNN). It is based on a set of several little neural networks, each one discriminating only two classes. The principles used to perform the decision of classification are : a branch quality index ...
متن کاملAn Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition
The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2004
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2003.10.010